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Abstract 

A computer-based symmetry algebra is described 
which permits the reconstruction of an infinite bond 
network from the asymmetric connectivity without 
an a priori knowledge of atomic coordinates. The 
algebra requires not only an algorithmic ordering of 
the Wyckoff groups but the designation of one site 
in each Wyckoff group as a special-position rep- 
resentative (SPR) site. The algebra is designed to be 
used for analysing the bonding network of com- 
pounds appearing in the Inorganic Crystal Structure 
Database. 

Introduction 

With the advent of crystal structure databases, com- 
puters are now used for the systematic examination 
of the structures of large numbers of related com- 
pounds. The program S l N D B A D  (Altermatt & 
Brown, 1985) has been used to calculate the bond 
vectors in the asymmetric unit from the atomic co- 
ordinates obtained from the Inorganic Crystal Struc- 
ture Database (Bergerhoff, Hundt, Sievers & Brown, 
1983). A systematic application of S I N D B A D  to 
entries stored in this database has resulted in the 
creation of a file (BONDFILE) containing the asym- 
metric bond sets of several thousand compounds. To 
expand the asymmetric set of bonds into the full 
bonding network requires the application of the sym- 
metry operations of the appropriate space group. This 
can be done by computer, provided that proper care 
is taken in treating the bonds formed by atoms on 
special positions. This paper describes an algebra for 
doing this which, inter alia, requires an algorithm for 

* Present address: CIBA-GEIGY AG, Basel, Messtechnik+ 
Automation, R-1055.3.20, CH-4002 Basel, Switzerland. 

ordering the special positions and their representative 
sites. 

Expansion of an asymmetric bond set 

The BONDFILE contains the asymmetric set of bond 
vectors, each bond being identified by its two terminal 
atoms. Because of space limitations the atomic co- 
ordinates are not stored in the file. The asymmetric 
set of bond vectors is expanded into the full bond 
network by generating all the bonds around each of 
the terminal atoms of the network in turn. Each atom 
is identified by an index indicating which symmetry 
operator and which lattice vector is used to generate 
it from the given atom in the asymmetric unit. This 
index consists of five numbers, the first referring to 
an ordered list of atoms in the asymmetric unit, the 
second to an ordered list of symmetry operators, and 
the last three numbers to the lattice translation vector. 
The ordered list of symmetry operators could be a 
list of Seitz matrices which is stored explicitly in the 
BONDFILE,  but we have found it more convenient 
to regenerate this list as required from the space-group 
symbol. Several programs are available to do this. 
The older ones interpret the Hermann-Mauguin sym- 
bol but recently new space-group symbols have been 
proposed (Hall, 1981; Shmueli, 1984) that are 
specifically designed to avoid the setting ambiguities 
inherent in the Hermann-Mauguin symbol. We have 
chosen to use the Hall (1981) symbol and the ordering 
of symmetry operators produced by the program 
S G N A M E  in X T A L  (Stewart & Hall, 1983). This 
ordering is symbol dependent (it is even different for 
different symbols describing the same space-group 
setting), but since the Hall symbol that was used to 
generate the asymmetric set of bonds is the one stored 
in the BONDFILE,  the program can always recon- 
struct the ordered list of symmetry operators 
appropriate to the problem. 
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T r e a t m e n t  o f  a t o m s  on spec ia l  p o s i t i o n s  

If all atoms are on general positions, the expansion 
of the asymmetric set of bonds to the full network 
presents few difficulties, but to generate the bonds 
around an atom on a special position requires a 
knowledge of  both the point group of the special 
position a~nd its orientation. Although each Wyckoff 
group is associated with a unique point group, the 
point group may have different orientations at 
different sites. For example, in a tetragonal space 
group an atom on a (100) mirror plane will be related 
by the fourfold axis to another on a (010) mirror 
plane. An oriented point-group symbol could be 
stored for each atom in the network, but again it is 
more convenient to let the computer calculate it. It 
is, however, essential that the orientation of the point 
group of the atom in the asymmetric unit be known, 
and this can be ensured by defining one particular 
site in a Wyckoff group as a special-position rep- 
resentative (SPR) site. The asymmetric set of atoms 
is then chosen so that all the atoms occupy SPR sites. 
It is then necessary only to identify the Wyckoff group 
to which each atom belongs, and this can be done by 
reference to an ordered list of Wyckoff groups. The 
oriented point-group symbol of any atom in the crys- 
tal is found by applying the appropriate symmetry 
operator to the point-group symbol of the SPR for 
that atom. This formalism requires that the computer 
be able to generate an ordered list of Wyckoff groups 
for each space group and that it be able to determine 
the SPR site for each. An obvious choice of ordering 
would be that used in International Tables for  Crystal- 
lography (1983), but unfortunately this cannot be used 
for several reasons, the chief being that any algorith- 
mic ordering has to be setting dependent and the 
Wyckoff symbols are deliberately chosen to be setting 
independent.  We have therefore devised our own 
ordering (Table 3) of the Wyckoff groups and we 
have defined an algorithm for determining which site 
in a Wyckoff group is the SPR (Table 2). Although 
our ordering, being necessarily setting dependent,  
cannot always reproduce that used in International 
Tables for  Crystallography, we have preserved the 
principle of  ordering on the degree of symmetry by 
sorting first on the site multiplicity. Our first Wyckoff 
group is always the general position, a choice which 
has some obvious programming advantages. The 
second sort can be based either on the point group 
(which would bring together Wyckoff groups of 
similar symmetry) or on the coordinates of the SPR. 
We have chosen the latter sorting because the point- 
group symbol may not always be available since there 
are many applications in which it is not needed. In 
any case, since the symmetry is treated entirely within 
the program, the user does not need to be aware of 
the ordering or even of the existence of special posi- 
tions. Should the user particularly want to examine 

Table 1. Example o f  the use o f  the Seitz-matrix 
formalism, the special-position representative and the 

special-position symmetry table 

Space group P2Jm 

Symmetry operators: 
1 x, y, z -x, ~+ y, -z -x, -y, -z x, ~- y, z 

which are represented as (S/T): 

(1) l 0 0 0.0 (2) -1 0 0 0.0 
0 1 0 0-0 0 1 0 0-5 
0 0 1 0-0 0 0-1 0-0 

(3) - 1  0 0 0.0 (4) 1 0 0 0.0 
0-1 0 0.0 0-1 0 0-5 
0 0-1 0-0 0 0 1 0-0 

The special-position representative is for 
site 2(e) (k=2): site 2(d) (k=3): 

(x, Lz) I~,0,~) 
( S P / T P ) 2  r ( S P / T P ) 3  r 

1 0 0 0-0 0 0 0 0.5 
0 0 0 0.25 0 0 0 0.0 
0 0 1 0.0 0 0 0 0.5 

The special-position symmetry table in the form i(j) k for (SP/TP)k, = 
( S / T ) j  * ( S P / T P ) k  r for the above two positions is 

j(=it)=l 2 3 4 
i2 =1 221 
i 3 =1212.  

the special positions and their ordering our program 
G E T S P E C  described in the Appendix can produce 
a listing in the International Tables for Crystallography 
format. 

S y m m e t r y  r e p r e s e n t a t i o n  and h a n d l i n g  in 
c o m p u t e r  p r o g r a m s  

A simple way to store symmetry operators in a com- 
puter program is in the form of Seitz matrices ( S / T )  
(Seitz, 1936; Bradley & Cracknell, 1972). These are 
4 x 4 matrices which can be decomposed into a rota- 
tional 3 × 3 matrix $ and a translational 3-vector T. 
The Seitz-matrix formulation can also be used for 
representing special position operators ( S P / T P ) ,  
allowing one to specify the particular free (SP) and 
fixed (TP) coordinates of the site (see Table 1 for an 
example). For each Wyckott group or special position 
k a set of operators {(SP/TP)gj ,  j =  1, ink', where 
mk = group multiplicity} is defined which transforms 
an arbitrary coordinate vector X,,--(x, y, z ) t  to the 
set of coordinate vectors {X~kj,j = 1, mk} which define 
all possible sites of the kth Wyckoff group within the 
primitive unit cell: 

X a k j = ( S P / T P ) k j *  X,,. (1) 

Only the special-position representative operator, 
( S P / T P )  kr,~; is needed to define the Wyckoff group 

t Note that in general one or more of the coordinates x, y and 
z will be undefined and can be set to any value. However, in order 
for equation (6) (below) to hold, they should be given the actual 
coordinates required by the SPR. 

~t The way in which (SP/TP)k, is chosen is described below. 
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k, because all the other sites can be found using 

o r  

Xakj = (S/  T)j • (SP/  TP)k~ * Xa 

= Sj * S Pkr * Xa + Sj * TPkr + Tj  

(2) 

(SP/TP)k j=(S /T) j*(SP/TP)k ,  (3) 

However, applying (3) using all values of j will, in 
general, create the set {Xakj} several times depending 
on the multiplicity mk of the Wyckoff position. It is 
therefore necessary to set up a special-position sym- 
metry (SPS) table which indicates which symmetry 
operators acting on the SPR give identical special- 
position operators. Table 1 gives an example. All the 
information about the point group of the SPR and 
its orientation is contained in the SPS table. 

The formalism described above gives only the 
transformations produced by the set of primitive sym- 
metry operators [those listed in International Tables 
for Crystallography (1983)]. In order to generate 
atoms in any desired part of the crystal we expand 
the Seitz matrix by the addition of a lattice vector L~. 
The set of symmetry and translation operators 
{(S/T)jLt} is infinite for an unbounded crystal and 
includes all possible symmetry operations within the 
crystal. The transformation of an arbitrary position, 
Xo, to a symmetry-dependent one anywhere else in 
the crystal becomes 

Xafl=(S/T)jLt ,  Xa=Gj ,  Xa+Tj+Lt, (4) 

and for a special position k the transformation 
becomes 

Xakjl ~" ( S~ T)jL, * (SP/ TP/LP)k~ * X,, 

= Sj * SPkr * X~+Sj  * (TPk~+LPk~) +Tj + L! 

(5) 
where the special-position representative 
(SP/TP/LP)kr can always be chosen so that LPkr is 
a zero vector. The notation (SP/TP)k,. is therefore 
quite general. 

The above formalism allows one to manipulate the 
symmetry operators without reference to the actual 
value of the coordinates Xa of the atom a in the 
asymmetric unit provided that the values of Xa are 
those of the SPR. This is fulfilled when 

Xa = (SP/TP)k~ * X~. (6) 

This restriction is essential since the symmetry 
operator (S/T)iL~ that transforms a special-position 
operator into itself, 

(SP/TP)kj=(S/T),LI*(SP/TP)kj,  (7) 

will in general be different for different values of j. 
It is therefore necessary to start with an identified 
member of the set {(SP/TP)kj, j = 1, mk}, namely the 
SPR. The general position is treated in the same way 

as a special position, but since in this case S P = I and 
TP = 0, there are no restrictions on the choice of the 
coordinates Xa. The coordinates of any atom in the 
crystal are then given as 

Xakjt=(S/T)jLl*(SP/TP)kr * Xa. (8) 

Since the symmetry transformation is defined 
uniquely by the indices k, j and l, they can be manipu- 
lated without any direct knowledge of Xa. The index 
k can be found by reference to a table of properties 
of the atom a, so that it need not be given explicitly, 
leaving only the five integers a, j and l(3) to identify 
uniquely each atom in the crystal. The converse is 
not true since there are always at least two ways of 
generating the coordinates of an atom on a special 
position. In order to ensure that the index for each 
atom is also unique it is necessary to specify which 
symmetry operator is to be used in cases where there 
is a choice. This information is stored in the SPS table. 

Treatment of interatomic distances 

Interatomic distances can be defined in terms of a 
vector Vb(Vb = X,,~j~t2-Xa,j,t,) between the two atoms 
al , j l ,  l~ and a2,j2, 12. The complete set of symmetry- 
equivalent distances can be generated by application 
of the symmetry operations (S/T)j,Lr resulting in the 
vector 

Vbj, = S j, * Vb (9) 

between the atoms al ,  j~', l~' and a2, j~, l~, where 

X,,,l,,= (S/T)j,Lr * X,,jl. (10) 

In particular it is possible to generate all the sym- 
metry-equivalent distances around an atom (al ,  j l ,  
11) on a special position by applying those symmetry 
operations (as given in the SPS table) that leave the 
indices of this atom invariant. It is therefore not even 
necessary to know the distance vector V that describes 
a bond in order to reconstruct the complete con- 
nectivity within a crystal; it is sufficient to know the 
indices of the atoms that define the asymmetric set 
of bonds. 

Calculation of the special-position operators 

In order to calculate the special-position operators 
(SP/TP) it is first necessary to generate the symmetry 
operators (S/T).  We have written a Fortran program 
based on the algorithm used in XTAL (Stewart & 
Hall, 1983) to calculate an ordered list of primitive 
symmetry operators (those not involving lattice trans- 
lations) from the Hall space-group symbol (Hall, 
1981). These operators are used to generate the SPR, 
(SP/TP)kr, for each of the special positions of the 
space group as described below. At the same time 
our program calculates the SPS table for each SPR. 
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It is written in the form of the list i(j)k in which i is 
the symmetry operator with the lowest index that is 
equivalent to j for the particular SPR. An example 
of an SPS table is given in Table 1. 

Selection of the special-position representative 

Since the ordering of the special positions involves 
the coordinates of the special-position representatives 
(SPR), it is first necessary to describe how these are 
defined for a given Wyckoit group k. We first calculate 
all elements of the Wyckott group in the primitive 
cell, add all possible lattice translations to adjacent 
cells and then redefine the independent parameters 
in the rotational part of the Seitz matrix so that in 
the vector Xkj[ = (Xs, ys, Zs) = (SP/TP)kj * X~], if xs 
is dependent on y or z, the independent variable is 
relabelled as x and if there is a dependent variable 
it is chosen to be z~. 

As an example, consider the tetragonal space group 
in which the special position k contains 

0 0 0 0.75 

Xkl--(3, y,z) a s  (SP/TP)kI=O 1 0 0"0 

0 0 1 0.0 

and 

Xk2 = (Y, ¼, Z) as 

0 1 0 0.0 

(SP/TP)k2=O 0 0 0.25. 

0 0 1 0"0 

This redefinition leads to 

0 0 0 0-75 

(SP/TP)k~=3. 0 0 0.0 or Xk~=(3, X,Z) 

0 0 1 0"0 

and 

1 0 0 0.0 

(SP/TP)k2=O 0 0 0.25 or Xk2=(X, ¼, Z). 

0 0 1 0"0 

The fourteen steps listed in Table 2 are then applied. 
They are designed to select the SPR as the Seitz matrix 
with the fewest and most positive elements in the 
rotational part (SP) and the smallest overall transla- 
tion ( TP). 

Ordering the special positions 

The sorting of the SPR's to produce an ordered list 
of all special positions k is based first on the site 
multiplicity, then on the number of independent and 
dependent coordinates, and finally on the number of 
fixed coordinates and the sum of their values as 
described in Table 3. The general position is always 

Table 2. Steps taken to select the SPR as the Seitz 
matrix with fewest and most positive elements in the 

rotational part and smallest overall translation 

In a special  pos i t ion  k given by the set o f  Seitz matr ices  { ( S P / T P ) k j ,  
j = 1, multiplicity} app ly  the fol lowing tests in the order  given to 
select the specia l -pos i t ion  representa t ive  ( S P / T P ) k r .  At each  test 
reject all unse lec ted  e lements  o f  { ( S P / T P ) k j }  until only  the one 
representa t ive  is left. 

Representing the elements of (SP/Tla)kj as (Spum)/(tpu); u = 1, 2, 3, m = 
1, 2, 3, select the elements where: 

(1) if SP=zero  matrix: TP has the fewest components and Y.~ tp, is 
minimum, 

(2) spn->0, spt 2 = spt3 =0 and SP has the fewest non-zero diagonal ele- 
ments spuu, 

(3) if sp,, is non-zero: tp, =0, 
(4) $P22 --~ 0, 
(5) sp23 = 0, 
(6) tpl minimum, 
(7) spa 3 > 0, 
(8) if spi t=0:  sp2t =0, 
(9) sp21 <-- 1, 

(10) sp2t-> O, 
(1 l) tp2 minimum, 
(12) tp3 minimum, 
(13) if spt t=0:  spat =0, 
(14) spam>O. 

If there is no element left after a given test, the ones rejected in the current 
test are reset and the next test is applied. If after a given test only one 
(SP/TP)  is left, this is the representative (SP/TP)k, for the special 
position k. 

Table 3. Sorting of the SPR's 

To sort the specia l -pos i t ion  representa t ives  o f  two WyckolI  groups ,  
( S P / T P ) k t  r and  (SP/TP)k2r ,  in order ,  place higher  in the list the 
one  with: 

(1) the higher multiplicity; 
(2) more independent parameters (non-zero diagonal elements in SP); 
(3) more dependent parameters (non-zero off-diagonal elements in SP); 
(4) if there are two independent parameters: the one with SP(3, 3) = 0 and 

TP(3) smaller, or SP(2 ,2)=0  and TP(2) smaller, or SP(1, 1)=0 and 
TP(1) smaller, in that order; 

(5) if there is one independent parameter: SP(3, 3)#  0 and TP(1) smaller 
[and/or TP(2) smaller] or SP(2 ,2 )~0  and TP(1) smaller [and/or 
TP(3) smaller] or SP(1, 1)# 0 and TP(2) smaller [and/or TP(3) smal- 
ler] in that order; 

(6) the large number of non-zero fixed parameters; 
(7) if there are two non-zero fixed parameters: TP(3)= 0 or TP(2)= 0 or 

TP(1) = 0 in that order; 
(8) if there is one non-zero fixed parameter: TP(1)g0  or TP(2)#0  or 

TP(3) # 0, in that order; 
(9) the larger sum TP(1) + TP(2) + TP(3). 

The tests are applied in the order given until a difference in the two 
representatives leads to an ordering. The representatives in the ordered list 
are then numbered from top to bottom, so that the first position (at the top 
of the list) is the general position (see Table 4). 

included as the first Wyckoff group, and the last 
position in the list will therefore have the smallest 
possible multiplicity and have the fixed coordinates 
closest to the origin. 

Table 4 gives an example and compares our sorted 
list of special positions with the corresponding list in 
International Tables for Crystallography (1983). In 
many cases the proposed sorting scheme leads to a 
list identical to the one in International Tables, but 
the sorting in International Tables is primarily based 
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Table 4. Comparison o f  sorted SPR list with that in 
International Tables for  Crystallography (1983) 

S p a c e  g r o u p  n u m b e r  112, P712c. 

In each listing the columns are 
1. special position number, 4. site point symmetry, 
2. multiplicity, 5. coordinates. 
3. Wyckoff letter, 
International Tables listing Proposed listing 

1 8 n 1 x , y , z  1 8 n 1 ~ , z  
2 4  m 2.. 0 ,~ ,z  2 4  ! 2.. ~,-~,z 
3 4 l 2.. ~ , [ , z  3 4 m 2.. 0, , z  
4 4 k 2.. 0,0, z 4 4 k 2.. 0,0, z 
5 4 j  .2. 0, y, t 5 4 h .2. x,~, i 

1 1 6 4 i .2. x,~,~ 6 4 i .2. x,~,~ 
7 4 h  .2. l 1 ~,y,z 7 4  j .2. x, 0,~ 
8 4 g .2. x, 0,~ 8 4 g .2. x, 0 ,?  
9 2 f -4. .  ½,½,0 9 2 c 222. ~,~,~ 

1 1 10 2 e -4. .  0 ,0 ,0  10 2 f -4. .  - ,~ ,0  
11 2 d 222. 0,~,~t t 11 2 b 222. ~,0,~ t 
12 2 c 222. -,~,~ 12 2 d 222. 0 ,~,-  
13 2 b 222. ~,O,r~ 13 2 a 222. 0, 0, 
14 2 a 222. 0,0,~ 14 2 e -4. .  0 ,0 ,0  

on the site symmetries whereas the present ordering 
is based on the coordinate representation. 

Discussion 

A program, GETSPEC,  which incorporates these 
algorithms is described in the Appendix and is avail- 
able from the authors. We have also written programs 
which use the above formalism to carry out an 
expansion of a bonded set of atoms. These include 
subroutines which perform basic operations with the 
indices. Among these are multiplication 

( kj313) = ( kj2lE) * ( kjlll) 

and inverse multiplication 

( kjala) = ( kj212) -1 * ( kjlll). 

In each case the value ofj3 is uniquely determined 
from the group multiplication table and the SPS table, 
whereas /3 has to be calculated explicitly. We have 
also written routines to generate the atom indices 
corresponding to the set of operators (2) that are 
equivalent to a given operator (1) around the special 
position k: 

( kjElE) - ( kjlll). 

Our purpose in developing the symmetry handling 
procedures described above is to allow us to manipu- 
late bonding networks by computer in such a way 
that the user does not have to be concerned with the 
details, or even the existence, of symmetry. As further 
applications of computers in crystal chemistry are 
developed there will be an increased need for algorith- 
mic orderings of symmetry operators and special posi- 
tions to supplement the descriptions given in Inter- 
national Tables for  Crystallography (1983). The for- 
malism given in this paper is designed to provide a 
basis for the further development of computer 
manipulation of crystallographic symmetry. 

We thank the Natural Sciences and Engineering 
Research Council of Canada for an operating grant 
and Mr David Mosscrop for coding the routine that 
calculates the symmetry operators. 

APPENDIX 
Program G E T S P E C  

Input~output 

The only input needed is the Hall space-group 
symbol (Hall, 1981) but the program comes with a 
file containing the Hall symbols corresponding to the 
modified Hermann-Mauguin symbols used in the 
Inorganic Crystal Structure Database. The only 
restriction our program requires is that the unique 
hexagonal axis be the c axis. 

The output of the program consists of the Seitz 
matrices of all the symmetry operators and, using a 
similar matrix representation, the special-position 
representative of each Wyckoff group, sorted accord- 
ing to the ordering scheme described in the paper. 
Special-position point-group symbols as described in 
International Tables for  Crystallography (Hahn & Vos, 
1983) are also created. The output is written in the 
Standard Crystallographic File Structure (SCFS) 
(Brown, 1985). Table 5 shows the SCFS output for a 
non-centrosymmetric setting of Pbmn (number 53) 
and Table 6 gives an example of the printed output. 

Program structure 

The calling program reads the space-group symbol 
and then calls the following subroutines: 

S P A C R D  to transform a Hermann-Mauguin 
symbol to a Hall symbol using table 
look-up, 

S G H A L L  to calculate the symmetry operators of 
the general position from the Hall sym- 
bol. This routine is based on S G N A M E  
used in X T A L  (Stewart & Hall, 1983), 

G R M U L T  to calculate the group multiplication 
table, 

S P O S T  to derive the special-position rep- 
resentative (SPR) site for each special 
position, 

S P E S O R  to sort the special positions, 
S P M U L T  to derive the special-position symmetry 

table, 
S P S Y M  to create the special-position point- 

group symbol, 
W S C F S  to write the information on an SCFS 

file. 

Finally the calling program prints an output listing 
in an easily readable form (Table 6). 

All subroutines are written in machine-independent 
Fortran 77 and both VAX and Cyber versions are 
available for the calling program which also contains 
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T a b l e  5. S C F S  output for  a non-centrosymmetric 
setting o f  Pbmn 

SCFS output (N.B. this is a non-standard extension of SCFS-84. 
A standard SCFS-87 version will be available when the new version 
of SCFS is approved). 
TITLE 
* An example illustrating the SG OPERATORS section 
SG NAME 
HALL P 2A 2A-1B 

*LOS 
SYMMETRY (Format: A1, 2A4, 3(312, F10.7,4X)) 

1 0 0 0.0000000 0 1 0 0.0000000 0 0 1 0.0000000 
-1 0 0 0.5000000 0-1 0 0.0000000 0 0 1 0.0000000 

1 0 0 0.5000000 0-1 0 0.0000000 0 0-1 0.0000000 
-1 0 0 0.0000000 0-1 0 0.5000000 0 0-1 0.0000000 
-1 0 0 0.0000000 0 1 0 0.0000000 0 0-1 0.0000000 

1 0 0 0-5000000 0 1 0 0.5000000 0 0-1 0.0000000 
-1 0 0 0.5000000 0 1 0 0-5000000 0 0 1 0.0000000 

1 0 0 0.0000000 0-1 0 0.5000000 0 0 1 0.0000000 
*EOS 
SG OPERATORS (Format: A1, 2A4, 3(312, F10.7),I3, AI, IX, A8) 
SPEC 1 0 0 0.0000000 0 1 0 0.0000000 0 0 1 0.0000000 8 1 
SPEC 1 0 0 0.0000000 0 0 0 
SPEC 0 0 0 0.2500000 0 0 0 
SPEC 0 0 0 0.0000000 0 1 0 
SPEC 0 0 0 0.0000000 0 1 0 
SPEC 0 0 0 0.0000000 0 0 0 
SPEC 0 0 0 0-0000000 0 0 0 
SPEC 0 0 0 0.0000000 0 0 0 
SPEC 0 0 0 0.0000000 0 0 0 

*EOS 
END 

0.2500000 0 0 1 0.0000000 8 .M. 
0.0000000 0 0 1 0.0000000 4 ..2 
0.0000000 0 0 0 0.2500000 4 .2. 
0.0000000 0 0 0 0.0000000 4 .2. 
0.7500000 0 0 0 0.5000000 2 .2/M. 
0.2500000 0 0 0 0-5000000 2 .2/M. 
0.7500000 0 0 0 0.0000000 2 .2/M. 
0"2500000 0 0 0 0.0000000 2 .2/M. 

e n o u g h  i n f o r m a t i o n  a b o u t  t h e  c o m m o n  b l o c k  s t ruc -  
t u r e s  to  a l l o w  t h e  s u b r o u t i n e s  to be  u s e d  i n d e p e n -  
d e n t l y  in  o t h e r  p r o g r a m  p a c k a g e s .  SPOST, t h e  h e a r t  
o f  t h e  p r o g r a m ,  c o n t a i n s  a b o u t  1100 l ines  o f  F o r t r a n  
c o d e  a n d  c o m m e n t s ;  all  r o u t i n e s  t o g e t h e r  c o n t a i n  
a b o u t  3500 l ines .  N o  o v e r l a y  s t r u c t u r e  is n e c e s s a r y  
fo r  t he  C y b e r .  

Algorithm 

N o  g e n e r a l  a l g o r i t h m  c o u l d  be  f o u n d  fo r  S P O S T  
t h a t  w o u l d  w o r k  fo r  all  s y m m e t r y  o p e r a t o r s  in  all  
c r y s t a l l o g r a p h i c  s y s t e m s  w i t h  n o  l imi ts  o n  t h e  c h o i c e  
o f  axes .  T h e  p r o g r a m  t h e r e f o r e  runs  t h r o u g h  t h e  e n t i r e  
set  o f  s y m m e t r y  o p e r a t o r s  t r y i n g  to  so lve  all  e q u a t i o n s  
o f  t h e  t y p e  

i. e .  

I * X = S i  * X + T i  + Lj,  

X =  ( I - S , )  -1 • (T, + Lj) ,  ( A 1 )  

w h e r e  X is t h e  p o s i t i o n a l  v e c t o r  r e p r e s e n t i n g  the  
s p e c i a l  p o s i t i o n  c r e a t e d  by  t h e  i th  s y m m e t r y  o p e r a t o r  
(X g e n e r a l l y  h a s  f ree  a n d  f ixed  c o m p o n e n t s ) ,  I is t h e  
i d e n t i t y  m a t r i x ,  Si  is t h e  r o t a t i o n  (3 x 3) m a t r i x  a n d  
Ti is t he  t r a n s l a t i o n  3 - v e c t o r  a s s o c i a t e d  w i t h  t h e  i th  
s y m m e t r y  o p e r a t o r ,  a n d  Lj is a n y  la t t i ce  t r a n s l a t i o n  
vec to r .  O n l y  w h e n  t h e  i th  s y m m e t r y  o p e r a t o r  g ives  
r ise  to  a s p e c i a l  p o s i t i o n  d o e s  (A1)  h a v e  a s o l u t i o n .  

T h e  p r o g r a m  r e c o g n i z e s  t he  d i f f e r en t  f o r m s  o f  ( A 1 )  
a n d  e x p l o r e s  a n d  tes ts  t h e  p o s s i b l e  s o l u t i o n s ,  X. 

T a b l e  6. Example o f  the printed output 

Print output (note that this is non-standard setting indicated by 
the final letter of the Hermann-Mauguin symbol). 

Space group hr. 53 
Hermann-Mauguin symbol PBMNS 
Hall symbol P 2A 2A-1B 
Symmetry operators: 

1 +X, +Y, +Z 
2 L-X,-Y,+Z 
3 ½+X,-Y,-Z 
4 -X, ½-Y,-Z 
5 -X ,+Y, -Z  
6 ~+X,~+Y,-Z 
7 ~-X,~+Y, +Z 
8 +X,-~-Y,+Z 

Listing of special position: 
Nr. coordinates multiplicity site symmetry 

1 X, Y, Z 8 1 
2 X, ~, Z 4 .M. 

1 3 a, 0, Z 4 ..2 
4 0, Y, -~ 4 .2. 
5 0, Y, 0 4 .2. 
6 0,43-, ~ 2 .2/M. 
7 0, L~ ' 2 .2/M. 
8 0, 2, 0 2 .2/M. 
9 0, ~, 0 2 .2/M. 

Elapsed CPU time (VAX 780): 1.93 Seconds 

Results 

M o r e  t h a n  490 d i f f e r e n t  se t t ings  o f  t h e  230 s p a c e  
g r o u p s  a r e  f o u n d  in  t h e  I n o r g a n i c  C r y s t a l  S t r u c t u r e  
D a t a b a s e  a n d  all  h a v e  b e e n  r u n  t h r o u g h  G E T S P E C  
o n  a V A X  780 c o m p u t e r .  F o r  t r i c l in ic ,  m o n o c l i n i c  
a n d  o r t h o r h o m b i c  s p a c e  g r o u p s  w i t h  less t h a n  t h r e e  
m i r r o r  p l a n e s  t h e  c o m p u t i n g  t i m e  n e e d e d  is less  t h a n  
1.2 s; o r t h o r h o m b i c  mm g r o u p s ,  l o w e r  s y m m e t r y  
t e t r a g o n a l  a n d  h e x a g o n a l  s p a c e  g r o u p s  n e e d  u p  to  
6 s; 4 / m m m  a n d  6 m m m  g r o u p s  m a y  n e e d  u p  to  23 s. 
T h e  c u b i c  g r o u p s  m o s t l y  r u n  in  less t h a n  30 s, b u t  
s p a c e  g r o u p s  2 2 1 - 2 3 0  n e e d  5 5 - 3 3 0  s. W e  h a v e  n o t  
f o u n d  a n y  w a y  to  r e d u c e  t he  t i m e  r e q u i r e d  fo r  t h e s e  
last  t en  s p a c e  g r o u p s  b u t  w e  b e l i e v e  t h a t  u se r s  c o n -  
c e r n e d  o n l y  w i t h  h i g h l y  s y m m e t r i c  c u b i c  g r o u p s  m a y  
be  ab l e  to  w r i t e  a spec i a l  p r o g r a m  t h a t  wil l  be  m u c h  
fas ter .  
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